Новый виток эволюции ДВС: супер двигатель без коленвала

Содержание
  1. Энергия взаперти
  2. Труба Франка Штельзера
  3. Бесшатунный двигатель С. Баландина
  4. Паровой поршневой двигатель
  5. Knight Sleeve Valve
  6. Commer Rootes TS3
  7. Gobron Brillie Opposed Piston
  8. Нестандартные серийные двигатели
  9. Mazda/NSU Wankel Rotary
  10. Bugatti Veyron W-16
  11. Одноцилиндровый двигатель
  12. Роторно-поршневой двигатель (РПД)
  13. V16
  14. Газотурбинный двигатель
  15. В чем разница между системой без распредвалов и классической технологией привода клапанов
  16. Насколько хороша новинка и насколько она дороже обычной системы привода клапанов?
  17. Меж двух стихий
  18. Дышать во все клапаны
  19. На фортепиано коромыслом
  20. Три цилиндра, восемнадцать клапанов
  21. Долой каноны!
  22. Волк в овечьей шкуре
  23. Не тот гибрид
  24. Зачем нужно заливать моторное масло?
  25. Обработка коленвала.
  26. Мотор без коленчатого вала: преимущества и сложности реализации
  27. Почему мы хотим избавиться от коленчатого вала
  28. Двигатель Фролова: мотор без шатунов и коленвала
  29. Что в итоге

Энергия взаперти

Одна из самых радикальных концепций ДВС в истории — двигатель со свободным поршнем. Первые упоминания о нем в специальной литературе относятся к 1920-м годам. Представьте себе металлическую трубу с глухими концами и цилиндрический поршень, скользящий внутри нее. На каждом из концов трубы расположены инжектор для впрыска топлива, впускной и выпускной порты. В зависимости от типа топлива к ним могут добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся. Позднее появились более изощренные модели ДВС со свободным поршнем (FPE) — с двумя или даже четырьмя оппозитными поршнями, но это не изменило сути. Принцип работы таких моторов остался прежним — возвратно-поступательное линейное движение поршня в цилиндре между двумя камерами сгорания.

Куда уходит КПД Двигатель Питера Ван Бларигана отличается от обычного ДВС значительно более высоким КПД за счет отсутствия паразитных потерь. В конструкции отсутствуют вращающиеся массы, инерция которых увеличивается за счет центробежной силы. На поршни не действуют боковые силы, прижимающие их к стенкам цилиндра, благодаря чего уменьшается трение. Подшипники коленчатого вала и шатунов, поршневые пальцы, распредвал, кулачки и клапаны — все те узлы двигателя ОТТО, в которых свирепствует трение, отсутствуют в FPLA. Кроме того, на каждый цикл работы двигателя со свободным поршнем приходится два рабочих такта. При этом FPLA намного компактнее, проще и надежнее обычного ДВС. Рабочий прототип мотора Ван Бларигана уже был воплощен в металле и успешно прошел первую стадию испытаний.

Теоретически КПД FPE переваливает за 70%. Они могут работать на любом виде жидкого или газообразного топлива, крайне надежны и великолепно сбалансированы. Кроме того, очевидны их легкость, компактность и простота в производстве. Единственная проблема: как снять мощность с такого мотора, механически представляющего собой замкнутую систему? Как оседлать снующий с частотой до 20000 циклов в минуту поршень? Можно использовать давление выхлопных газов, но эффективность при этом падает в разы. Эта задача долго оставалась неразрешимой, хотя попытки предпринимались регулярно. Последними о нее обломали зубы инженеры General Motors в 1960-х годах в процессе разработки компрессора для экспериментального газотурбинного автомобиля. Действующие образцы судовых насосов на основе FPE в начале 1980-х были изготовлены французской компанией Sigma и британской Alan Muntz, но в серию они не пошли.

Возможно, об FPE еще долго бы никто не вспомнил, но помогла случайность. В 1994 году Департамент энергетики США поручил ученым Национальной лаборатории Sandia изучить эффективность бортовых генераторов электроэнергии на базе ДВС различных типов, работающих на водороде. Эта работа была поручена группе Питера Ван Бларигана. В ходе осуществления проекта Ван Блариган, которому концепция FPE была отлично известна, сумел найти остроумное решение проблемы превращения механической энергии поршня в электричество. Вместо усложнения конструкции, а значит — снижения результирующего КПД, Ван Блариган пошел путем вычитания, призвав на помощь магнитный поршень и медную обмотку на цилиндре. Несмотря на всю простоту, такое решение было бы невозможным ни в 1960-х, ни в 1970-х годах. В то время еще не существовало достаточно компактных и мощных постоянных магнитов. Все изменилось в начале 1980-х после изобретения сплава на основе неодима, железа и бора.

Схема двигателя Штельзера Единая деталь сочетает в себе два поршня, топливный насос и клапанную систему.

За эту работу в 1998 году на Всемирном конгрессе Общества автомобильных инженеров SAE Ван Бларигану и его коллегам Нику Парадизо и Скотту Голдсборо была присвоена почетная премия имени Харри Ли Ван Хорнинга. Очевидная перспективность линейного генератора со свободным поршнем (FPLA), как назвал свое изобретение Ван Блариган, убедила Департамент энергетики продолжить финансирование проекта вплоть до стадии экспериментального агрегата.

Труба Франка Штельзера

 В 1981 году немецкий изобретатель Франк Штельзер продемонстрировал двухтактный мотор со свободным поршнем, который он разрабатывал в своем гараже с начала 1970-х. По его расчетам, движок был на 30% экономичнее обычного ДВС. Единственная движущаяся деталь мотора — сдвоенный поршень, снующий с бешеной частотой внутри цилиндра. Стальная труба длиной 80 см, оснащенная карбюратором низкого давления от мотоцикла Harley-Davidson и блоком катушек зажигания Honda, по грубым прикидкам Стельзера, могла вырабатывать до 200 л.с. мощности при частоте до 20 000 циклов в минуту. Штельзер утверждал, что его моторы можно делать из простых сталей, а охлаждаться они могут как воздухом, так и жидкостью. В 1981 году изобретатель привез свой мотор на Франфуртский международный автосалон в надежде заинтересовать ведущие автокомпании. Поначалу идея вызвала определенный интерес со стороны немецких автопороизводителей. По отзывам инженеров Opel, прототип двигателя демонстрировал великолепный термический КПД, а его надежность была совершенно очевидной — ломаться там было практически нечему. Всего восемь деталей, из которых одна движущаяся — сдвоенный поршень сложной формы с системой уплотнительных колец общей массой 5 кг. В лаборатории Opel были разработаны несколько теоретических моделей трансмиссии для мотора Штельзера, включая механическую, электромагнитную и гидравлическую. Но ни одна из них не была признана достаточно надежной и эффективной. После Франкфуртского автосалона Штельзер и его детище пропали из поля зрения автоиндустрии. Еще пару лет после этого в прессе то и дело появлялись сообщения о намерениях Штельзера запатентовать технологию в 18 странах мира, оснастить своими моторами опреснительные установки в Омане и Саудовской Аравии и т. д.С начала 1990-х Штельзер навсегда пропал из виду, хотя его сайт в интернете все еще доступен.

Максимальная мощность FPLA составляет 40 кВт (55 лошадок) при среднем потреблении топлива 140 г на 1кВтч. По эффективности двигатель не уступает водородным топливным ячейкам — термический КПД генератора при использовании в качестве топлива водорода и степени сжатия 30:1 достигает 65%. На пропане чуть меньше — 56%. Помимо этих двух газов FPLA с аппетитом переваривает солярку, бензин, этанол, спирт и даже отработанное растительное масло.

Однако ничто не дается малой кровью. Если проблема превращения тепловой энергии в электрическую Ван Блариганом решена успешно, то управление капризным поршнем стало серьезной головной болью. Верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда. Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленвалом. В FPLA же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в одну из боковых стенок.

Зеленый и плоский Двигатель Ecomotors отличается не только скромными габаритами и массой. Внешне плоский агрегат напоминает оппозитные моторы Subaru и Porsche, которые дают особые компоновочные преимущества в виде низкого центра тяжести и линии капота. Это означает, что автомобиль будет не только динамичным, но и хорошо управляемым.

Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой. Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о термодинамике FPE и научиться управлять процессом сгорания смеси». Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для FPE удастся разработать простую и дешевую систему управления».

Ван Блариган более оптимистичен, чем его коллеги по цеху. Он утверждает, что управление положением поршня может быть надежно обеспечено посредством той же пары — статор и магнитная оболочка поршня. Более того, он считает, что полноценный прототип генератора с настроенной системой управления и КПД не менее 50% будет готов уже к концу 2010 года. Косвенное подтверждение прогресса в этом проекте — засекречивание в 2009 году многих аспектов деятельности группы Ван Бларигана.

У кого шатун длиннее Значительная часть потерь на трение в обычных ДВС приходится на повороты шатуна относительно поршня. Короткие шатуны поворачиваются на больший угол, нежели длинные. В OPOC очень длинные и сравнительно тяжелые шатуны, которые снижают потери на трение. Уникальная конструкция шатунов OPOC не требует использования поршневых пальцев для внутренних поршней. Вместо них применяются радиальные вогнутые гнезда большого диаметра, внутри которых скользит головка шатуна. Теоретически такая конструкция узла позволяет сделать шатун длиннее обычного на 67%. В обычном ДВС серьезные потери на трение возникают в нагруженных подшипниках коленвала во время рабочего такта. В OPOC этой проблемы не существует вовсе — линейные разнонаправленные нагрузки на внутренний и внешний поршни полностью компенсируют друг друга. Поэтому вместо пяти опорных подшипников коленвала для OPOC требуется лишь два.

Бесшатунный двигатель С. Баландина

Преобразование возвратно-поступательного движения поршневой группы во вращательное движение осуществляет механизм, который основан на кинематике “точного прямила”. То есть, два поршня соединены жестко штоком, воздействующим на коленчатый вал, вращающийся с зубчатыми венцами в кривошипах. Удачное решение задачи нашел советский инженер С. Баландин. В 40 – 50-х годах он спроектировал и построил несколько образцов авиамоторов, где шток, который соединял поршни с преобразующим механизмом, не делал угловых качаний. Такая бесшатунная конструкция, хотя и была в некоторой степени сложнее механизма, занимала меньший объем и на трение обеспечивала меньшие потери. Надо отметить, что аналогичный по конструкции двигатель испытывался в Англии в конце двадцатых годов. Но заслуга С. Баландина состоит в том, что он рассмотрел новые возможности преобразующего механизма без шатуна. Поскольку шток в таком двигателе не качается относительно поршня, тогда можно с другой стороны поршня тоже пристроить камеру сгорания с конструктивно несложным уплотнением штока проходящего через ее крышку.

1 – поршневой шток 2 – коленчатый вал 3 – подшипник кривошипа 4 – кривошип 5 – вал отбора мощности 6 – поршень 7 – ползун штока 8 – цилиндр Подобное решение дает возможность почти в 2 раза увеличить мощность агрегата при неизменном габарите. В свою очередь, такой двусторонний рабочий процесс тpебует необходимость по обе стороны поршня (для 2 камер сгорания) устройства газораспределительного механизма с должным усложнением, а, стало быть, и удорожанием конструкции. Видимо, такой двигатель более перспективен для машин, где основное значение имеют высокая мощность, малая масса и небольшой габарит, а себестоимость и трудоемкость имеют второстепенное значение. Последний из бесшатунных авиамоторов С. Баландина, который был построен в 50-х годах (двойного действия с впрыском топлива и турбонаддувом, двигатель ОМ-127РН), имел очень высокие для того времени показатели. Двигатель имел эффективный КПД около 0,34, удельную мощность – 146 л. с./л и удельную массу – 0,6 кг/л. с. По таким характеристикам он был близок к лучшим двигателям гоночных автомобилей.

Паровой поршневой двигатель

Пар поочередно подается то две противоположные стороны поршня. Подача его регулируется золотником, который скользит над цилиндром в парораспределительной коробке. В цилиндре шток поршня уплотнен втулкой и соединен с достаточно массивным крейцкопфным механизмом, который преобразует его возвратно-поступательное движение во вращательное.

Knight Sleeve Valve

Commer Rootes TS3

Gobron Brillie Opposed Piston

Нестандартные серийные двигатели

Ежегодно создаются десятки новых моделей автомобильных «сердец». Но нестандартность — не единственное, что интересует производителей. Важно, чтобы товар мог обеспечить конкурентное преимущество. Поэтому далеко не все удивительные двигатели были сделаны больше 1 раза. И все же, некоторые из них задержались на рынке десятки лет.

Mazda/NSU Wankel Rotary

В 1958 немецкий инженер-любитель по Имени Феликс предложил совершенно необычную конструкцию для двигателя внутреннего сгорания. В ней треугольный поршень вращался внутри овального цилиндра. Самое странное, что двигатель оказался достаточно мощным, а конструкция — эффективной. Единственной сложностью была необходимость невероятно точной балансировки и подгонки всех деталей, но немцев это не остановило.

Была и другая проблема — слишком высокий расход топлива. С ней боролись вплоть до 2012 года, постоянно модифицируя систему. Но после выпуска спорткара Mazda RX-8 решили все же отказаться от дальнейших попыток довести ее до совершенства.

Bugatti Veyron W-16

Один из мощнейших и наиболее знаменитых автомобилей современности, суперкар Bugatti 2005 года выпуска оснащен 8-литровым двигателем, более, чем на 1000 лошадиных сил. Для обеспечения таких показателей был создан уникальный 64-клапанный W-образный мотор с 4 турбонагнетателями.

Пальма первенства по мощности среди серийных легковых автомобилей на данный момент принадлежит шведскому Koenigsegg Regera мощностью в 1790 лошадиных сил.

Производитель утверждает, что машина гарантировано служит весь заявленный срок без поломок. Но фактически оказалось, что содержание авто не по карману большинству богачей мира. Даже без ДТП и технических проблем сервисное обслуживание обходится минимум в 300000 $ в год.

Одноцилиндровый двигатель

Benz Patent-Motorwagen, построенный Карлом Бенцем в 1885 году и считающийся первым автомобилем в истории, оснащался одноцилиндровым четырёхтактным двигателем объёмом 954 «кубика». Спустя почти десятилетие, в 1894 году, собрали 25 машин с таким мотором мощностью от 1,5 до 3 сил.

На протяжении многих лет одноцилиндровые ДВС использовались на небольших городских автомобилях, но при этом были не такими уж распространёнными. Чаще всего их можно встретить в мире двухколёсной техники: на скутерах и мотоциклах.

 

Роторно-поршневой двигатель (РПД)

Также называемый двигателем Ванкеля, этот мотор в большей степени стал известен благодаря автомобилям Mazda. Считается, что его изобрёл в конце 1920-х годов немецкий инженер-самоучка Феликс Ванкель. Одними из первых такой ДВС получили автомобили NSU. Также роторно-поршневой двигатель ставили на мотоциклы Norton и Suzuki. Но абсолютным рекордсменом по числу моделей, оснащённых им, была все же Mazda (RX-3, RX-7 и RX-8).

В 1991 году гоночная Mazda 787B победила в «24 часах Ле-Мана», став первым автомобилем с РПД, достигшим такого результата. Хотя, она же была и последним, поскольку на следующий год машинам с таким типом мотора запретили участвовать в гонке.

Кстати, наш АвтоВАЗ тоже проектировал роторно-поршневые двигатели. И даже выпускал их малыми сериями.

 

V16

Поскольку эквивалентным по рабочему объёму моторам V8 и V12 удавалось обеспечивать такие же мощностные характеристики, двигатель V16 не получил широкого распространения в автомобильной промышленности. Хотя несколько любопытных примеров его использования всё же имеют место быть.

Начиная с марки Cadillac, которая первой стала устанавливать такой мотор в 30-х годах прошлого века, продолжая спорткаром Cizeta V16T (на фото) и заканчивая очень редким седаном BMW 767iL в кузове Е32. А ещё двигателями V16 оснащали свои гоночные болиды Alfa Romeo («Тип 316» и «Тип 162») и Auto Union. 

Газотурбинный двигатель

До сих пор мы говорили только о поршневых ДВС. Однако, в автомобильной истории встречались и куда более экзотические моторы – газотурбинные. Пожалуй, самой известной машиной подобного рода являлась двухдверка, выпущенная для «Крайслера» компанией Ghia в период с 1963 по 1964 годы.

Тираж необычного купе составил всего 55 экземпляров, из которых пять были прототипами и 50 – серийными для будущих покупателей. Все они построены в оригинальных кузовах фирмы Ghia. Модель не получила собственного имени и потому стала известной просто как Chrysler Turbine Car, то есть «турбинный автомобиль Крайслер».

На машину установили газотурбинный двигатель A-831, способный работать буквально на всём, что горит: от бензина и керосина до соевого масла, текилы и даже женских духов. Отдача составляла чуть более 130 сил, а турбина раскручивалась до 60 000 об/мин.

Несмотря на то, что автомобиль успешно прошел испытания на дорогах общего пользования, Chrysler свернул проект. Отчасти из-за финансового кризиса в автоконцерне, а также по причине подготовки к введению первых американских стандартов ограничения токсичности выхлопа.

В чем разница между системой без распредвалов и классической технологией привода клапанов

Из названия и описания технологии становится понятным, что речь действительно идет о двигателе, в котором отсутствуют распределительные валы. На самом деле необычный подход к инженерии внутримоторных технологий, главный секрет которых заключается в том, что двигателю не нужны эти валы, поскольку клапаны рассчитаны на индивидуальную работу, каждый по отдельности. Каждый клапан не связан жестко с соседними клапанами, отсюда проистекает название- «свободные клапаны», FreeValve. Главная мысль заключается в том, чтобы работа двигателя внутреннего сгорания стала более эффективной во всех фазах работы. Стандартные распределительные валы ввиду заложенных в них конструктивных особенностей являются крайне компромиссными вариантами, что зачастую приводит к определенным «жертвам», повышенный расход топлива в угоду мощности или низкий крутящий момент на высоких оборотах в угоду пиковой мощности и т.д. С новой технологией инженеры получили возможность сделать двигатель эффективным при любых оборотах и на всех режимах работы, не опасаясь провалов на холостом ходу, посредственной динамики или высокого расхода топлива. Звучит как недосягаемая мечта, но нет ничего невозможного, возможно все, что возможно себе представить. Дочерняя компания Кёнигсегг добилась высоких результатов, создав вполне рабочий, практически серийный экземпляр своей разработки, которую они долгие годы возили от выставки к выставке, представляя прототип на разных своих новинках. Вместо распредвалов, каждый клапан приводится в движение отдельным приводом, работу которых в свою очередь контролирует электроника.

Насколько хороша новинка и насколько она дороже обычной системы привода клапанов?

Разработчики утверждают, что система без распредвалов использует на 10% меньше энергии, чем традиционные решения привода. Эти проценты в стандартной схеме двигателя обычно уходят на преодоление трения, привод и работу всей верхней части «головы» мотора, то есть всех этих многочисленных систем. Эффективность использования такого двигателя как несложно догадаться будет на 10% лучше, но гораздо больший выигрыш станет очевидным при экологической проверке.
Двигатель может работать в четырех циклах: стандартный- Отто, сложный- Миллера и экономный-Аткинсона. Также двигатель способен воспроизводить цикл Хедмана с изменяемой степенью сжатия.

Например, в двигателе с искровым зажиганием, (читайте, в бензиновом моторе) с установленным FreeValve можно смело снять каталитический нейтрализатор, а экономичность даже у мощного бензинового двигателя станет сродни дизельному варианту. В результате полученный силовой агрегат станет дешевле эквивалентного дизельного мотора, говорят в FreeValve. На дизельные двигатели также могут быть установлены новомодные электронные приводы клапанов, что в теории должно чуть снизить расход мотора работающего на ДТ и серьезно повысить экологичность его выхлопа. Стоимость новой технологии. Если взять в расчет науку экономику, то получается, что первые 10- 100 тыс. двигателей, построенных по этой технологии, будут стоить дороже обычных типов силовых агрегатов, но в конечном итоге, когда производство будет поставлено на промышленный поток и при достижении определённой «критической массы», стоимость новых типов моторов начнет постепенно снижаться и в итоге сравняется со стоимостью стандартного ДВС. При этом такие моторы будут более эффективными, чем традиционные модели, будут меньше расходовать горючего при увеличении мощности и станут показывать гораздо более приемлемые показатели полки крутящего момента.

Меж двух стихий

Дышать во все клапаны

На фортепиано коромыслом

«Использовать традиционный распредвал вместо Freevalve — это все равно что играть на фортепиано коромыслом вместо пальцев», — утверждает фон Кёнигсегг. Что за проблемы хочет решить изобретатель, программируя поведение каждого клапана в отдельности? Перечислим их в порядке нарастания интересности.

Самое очевидное: для разных режимов работы двигателя (прежде всего скорости вращения коленвала) существует свой оптимальный состав топливовоздушной смеси, свои правильные моменты открытия и закрытия клапанов. Традиционно эта проблема решается с помощью механизма изменения фаз газораспределения (например, VTEC): весь распределительный вал слегка поворачивается относительно шестерни привода газораспределительного механизма (ГРМ), и все моменты открытия и закрытия клапанов смещаются вперед или назад.

Красный график демонстрирует кривую открытия впускного клапана, синий — выпускного. Хорошо видно, что клапаны максимально долго пребывают в полностью открытом положении, — графики имеют почти прямоугольный профиль, тогда как с обычным ГРМ они были бы больше похожи на параболы. Необходимые объемы газов проходят через клапаны Freevalve за меньший промежуток времени, чем обычно, поэтому короткие фазы впуска и выпуска не перекрываются. В этом кроется причина почти двукратного улучшения экологических показателей.

Проблема VTEC заключается в ограниченном количестве режимов, в то время как индивидуально управляемые клапаны позволяют пересматривать оптимальный набор параметров при любом, даже самом малом изменении оборотов. Но главное то, что Freevalve позволяет изменять не только момент, но и продолжительность открытия клапанов.

А что, если нам захочется гибко управлять мощностью двигателя, отключая часть цилиндров? В современных двигателях задача решается с помощью весьма сложного механизма: для каждого клапана предусматривается два кулачка, которые сменяют друг друга, сдвигаясь вдоль распредвала. Один кулачок обеспечивает штатную работу клапана, второй отвечает за работу цилиндра в «режиме ожидания». Клапаны Freevalve позволяют в любой момент включать любую программу для любого цилиндра без каких-либо механических ухищрений.

И все же главная проблема традиционного ГРМ кроется в эллиптической форме кулачка, благодаря которой клапан практически никогда не бывает открыт или закрыт полностью. Вместо этого он всегда или плавно открывается, или плавно закрывается, что снижает его пропускную способность. Мало того, эта особенность приводит к тому, что в определенные моменты впускные и выпускные клапаны оказываются открытыми одновременно, и это отрицательно сказывается на экологических характеристиках двигателя.

Клапаны Freevalve позволяют сделать головку блока цилиндров и сам двигатель намного компактнее. Но это далеко не единственное компоновочное преимущество. Можно увеличить количество клапанов на один цилиндр, разделив функции между ними. К примеру, направлять одну часть выхлопа к турбине нагнетателя, а другую — напрямую к катализатору, из экологических соображений. Специальные клапаны пригодятся и для того, чтобы превратить автомобиль в пневматический гибрид.

Кристиан фон Кёнигсегг демонстрирует кривую открытия клапанов на мониторе специального прибора. Она напоминает прямоугольник: клапан резко открывается, удерживается в открытом состоянии, а затем резко закрывается. Это вам не вечный грустный эллипс традиционного клапана. Особенно интересно, что кривая сохраняет свою угловатость даже на высоких оборотах (до 10 000 об/мин) — актуатору хватает мощности, чтобы открывать и закрывать клапан действительно быстро.

Пожалуй, именно последнее свойство в наибольшей степени поспособствовало тому, что тестовый двигатель со свободными клапанами показал впечатляющие результаты на испытаниях: он выдает на 30% больше крутящего момента, потребляет на 30% меньше топлива и дает 50%-ное сокращение вредных выбросов.

Три цилиндра, восемнадцать клапанов

Клапаны Freevalve позволяют сделать головку блока цилиндров и сам двигатель намного компактнее. Но это далеко не единственное компоновочное преимущество. Можно увеличить количество клапанов на один цилиндр, разделив функции между ними. К примеру, направлять одну часть выхлопа к турбине нагнетателя, а другую — напрямую к катализатору, из экологических соображений. Специальные клапаны пригодятся и для того, чтобы превратить автомобиль в пневматический гибрид.

Долой каноны!

Freevalve — это больше, чем кажется. Во-первых, система может в значительной мере изменить облик автомобиля. Распределительный вал и толкатели клапанов занимают много места в головке блока цилиндров, да и весят немало. Четырехцилиндровый двигатель с Freevalve размерами и весом напоминает трехцилиндровый. Если же учесть, что независимые клапаны дают значительный прирост крутящего момента, то можно и вовсе обойтись двумя цилиндрами. И тогда крохотный моторчик можно будет спрятать хоть под сиденьем.

Система позволяет в любой момент перевести двигатель на экзотический цикл работы, хоть Миллера, как на Mazda, хоть Аткинсона, как на Prius. Чего уж скромничать: при желании мотор может в мгновение ока стать двухтактным, почти двукратно нарастив мощность! Фон Кёнигсегг мечтает об автомобилях с двумя топливными баками и системами питания: для бензина и дизеля. Для перехода на биотопливо гибкость настроек также актуальна.

Но самая интересная фантазия изобретателя — это пневматический гибрид. Используя специальную конфигурацию клапанов, можно превратить ДВС в компрессор, который при торможении будет закачивать воздух в баллон, аккумулируя давление. Затем сжатый воздух можно нагнетать в цилиндры, разгоняя автомобиль, или использовать в качестве мощного аналога турбонаддува, кратковременно увеличивая мощность двигателя.

Пожалуй, самое неожиданное свойство двигателя с независимыми клапанами — надежность. Каждый водитель боится обрыва ремня ГРМ: если поршень «догонит» клапаны, то же самое произойдет и во всех остальных цилиндрах. Дорогостоящая головка блока цилиндров, а вместе с ней и поршни, и, возможно, шатуны с коленчатым валом окажутся серьезно повреждены.

А с Freevalve все просто: нет ГРМ — нет и проблем! Если же один цилиндр вдруг «стуканет» — все остальные останутся целы и невредимы.

Волк в овечьей шкуре

Старенький Saab, которому досталась опытная версия ГРМ с независимыми клапанами, проехал с ней 60 000 км, повидав и летний зной, и 20-градусные морозы. Головку блока цилиндров сделали из оригинальной «саабовской», выбросив из нее все лишнее и проточив новые каналы для гидравлики и пневматики. Наши коллеги из Jalopnik.com прокатились на «старичке» и отметили, что на оборотах до 3000 об/мин он проявляет дизельные повадки — характерно постукивает клапанами и выдает бешеный крутящий момент.

Не тот гибрид

Возможно, в недалеком будущем мы увидим на автомобилях концерна GM двигатели, сочетающие в себе преимущества как дизельных, так и бензиновых моторов.

НА СОВРЕМЕННЫХ автомобилях в основном применяются два типа двигателей – бензиновые и дизельные. Первые отличаются высокой мощностью, вторые – хорошей тяговитостью и экономичностью.

Сейчас многие автопроизводители работают над созданием мотора, который совместил бы в себе оба эти достоинства. В принципе конструкция обычных бензиновых агрегатов уже стала очень похожей на дизель: непосредственный впрыск топлива позволил поднять степень сжатия до 13-14 единиц (против 17-19 у дизельных вариантов).

На экспериментальных моделях степень сжатия еще выше – 15-16 единиц. Однако для постоянного самовоспламенения смеси этого не всегда достаточно. Поэтому при запуске двигателя, а также при высоких нагрузках топливо поджигается обычной свечой. При равномерном движении она отключается, и мотор переходит на “дизельный” режим работы, потребляя минимум топлива. Контролирует всю систему электроника, которая следит за условиями движения и при их изменении дает соответствующие команды исполнительным механизмам. По словам разработчиков, подобные двигатели весьма экономичны и практически не загрязняют окружающую среду. Однако уже сейчас ясно, что стоимость автомобилей с такими моторами будет достаточно высокой. Найдут ли они свое место на рынке, пока сказать сложно.

Зачем нужно заливать моторное масло?

Смазочный материал необходим для каждого двигателя внутреннего сгорания. При его использовании необходимо соблюдать основные правила эксплуатации:

  1. Регулярно контролировать уровень моторного масла в картере двигателя при помощи специального масломерного щупа, чтобы не допустить масляного голодания.
  2. Производить полную замену жидкости в сервисном центре в соответствии с рекомендациями.
  3. Использовать качественный смазочный материал правильной степени вязкости, следуя указаниям автопроизводителя.

Современные машины обладают высокой надежностью, но это не является причиной для игнорирования данных требований.

Масляное голодание — этот термин применяется, когда рабочие элементы силового агрегата не получают смазки в достаточном количестве для предотвращения ускоренного износа или поломки двигателя.

Обработка коленвала.

Коленвалы ДВС в процессе изготовления подвергаются механической и химико-термической обработкам. Так как коленчатый вал двигателей — это сложное устройство с высокой точностью, оно делается с высокими квалитетами только на заводах. Механобработка вала, в основном, понятна многим — это изменение формы по заданным параметрам.

Химическая обработка коленвалов — это закалка током высокой частоты (ТВЧ), азотирование, закалка поверхностного слоя. Изношенные азотированные валы не шлифуют, они подлежат замене. Благодаря всем этим хим и термическим обработкам повышается прочность и износоустойчивость.

Мотор без коленчатого вала: преимущества и сложности реализации

Итак, главной задачей и назначением любого ДВС является преобразование энергии, полученной от сгорания топлива, в механическую работу. Если просто, топливо сгорает в закрытом объеме, газы оказывают давление на поршень, через кривошипно-шатунный механизм возвратно-поступательное движение поршня преобразуется во вращательное.

В результате создается крутящий момент двигателя, который передается через трансмиссию на колеса автомобиля. Примечательно то, что хотя с момента создания первых моторов и их внедрения в широкие массы прошло уже более 100 лет, общая конструкция ДВС не изменилась.

Даже с учетом того, что современные двигатели получили высокоточные развитые системы электронного впрыска и управления, стало возможным изменять фазы газораспределения и т.д., хорошо известный КШМ продолжает лежать в основе силового агрегата на бензине, дизтопливе или газе.

При этом постоянно ведутся работы, чтобы мотор мог работать без коленвала. Дело в том, что привычный кривошипно-шатунный механизм не лишен целого ряда определенных минусов. Именно по этой причине инженеры стремятся избавиться от этого узла.

Дело в том, что работа КШМ связана с неизбежным создание трения и значительных боковых усилий, которые приводят к износу стенок цилиндров. В результате зеркало цилиндра повреждается, разрушаются поршневые кольца и т.д. Что касается потерь на трение, общий КПД двигателя заметно снижается.

Также двигатель с коленвалом сложно обслуживать, так как снятие коленвала без снятия двигателя на многих авто крайне сложно реализовать. Вполне очевидно, что если исключить указанные недостатки, двигатель станет более производительным, увеличится моторесурс.

Для решения задачи конструкторы предлагают разные подходы, однако на практике качественно реализовать большинство решений попросту не удается. Наибольшего внимания в данной области сегодня заслуживает двигатель Баландина и двигатель Фролова. Давайте остановимся на механизмах без шатунов и коленвала более подробно.

Почему мы хотим избавиться от коленчатого вала

Отчего же таким ненавистным устройством является коленчатый вал, который ещё называется кривошипно-шатунным механизмом? Почему все так упорно желают избавиться от него? Главная причина скрывается в присутствии чрезмерного бокового усилия, которое приходится на стенки цилиндра. Эта особенность обуславливает наличие ряда негативных факторов:

  • сокращение долговечности поршневой системы и её ускоренный износ;
  • увеличение потерей, которые приходятся на трение;
  • снижение КПД.

Чтобы убрать все эти отрицательные моменты, необходимо создать такой агрегат, конструкция которого будет предполагать возвратно-поступательные движения без углового качения.

Свободнопоршневой двигатель машины

Такие механизмы уже существуют в большом количестве. Далеко не все из них могут применяться на практике, лишь некоторые экземпляры достойны внимания. Мы выбрали две модели двигателей без коленвала, презентация которых всколыхнула общественность.

Двигатель Фролова: мотор без шатунов и коленвала

Основным принципом В. Фролова, который был положен в основу его разработок, является то, что коленчатый вал является далекой от совершенства деталью. По этой причине талантливый инженер детально изучил конструкцию двигателя Баландина, после чего предложил ряд собственных доработок.

С учетом того, что недостатком бесшатунного мотора Баландина оставались повышенные требования к точности изготовления эксцентрика, на начальном этапе Фролов существенно модернизировал данный узел преобразования. Однако далее был признан факт, что полностью избавиться от недостатков схемы мотора Баландина крайне сложно.

При этом Фролов не остановился на достигнутом, а также не оставил мысль избавиться от коленвала. Дальнейшие поиски надежных и эффективных механизмов преобразования привели к тому, что изобретатель обратил внимание на механизм ткацкого станка.

В результате был создан сегментно-роторный мотор, в основу которого были положены как заимствованные и доработанные, так и собственные идеи. Полученный двигатель не имеет коленвала, вместо данной детали используется механизм, который по принципу действия и своему устройству похож на шарнир разных угловых скоростей. Такое устройство более известно под названием шарнир Гука.

Вращающиеся детали в таком двигателе Фролова работают благодаря использованию подшипников качения. Что касается смазочной системы, моторное масло подается под крышки клапанов, затем стекает, осуществляя смазку и отвод лишнего тепла. Чтобы масло хорошо охлаждалось, перед двигателем также отдельно установлен масляный радиатор.

Что в итоге

Как видно, даже с учетом сложности реализации, инженеры и конструкторы все равно продолжают искать способы для повышения общей надежности двигателей, увеличения их КПД, снижения расхода топлива.

Также следует добавить, что западные производители также вплотную занимаются данным вопросом. Например, известная японская корпопрация Toyota также предложила свой вариант двигателя без коленвала. Хотя такой агрегат больше похож на электрический генератор, все равно его можно считать одной из версий ДВС.

С учетом вышесказанного становится понятно, что еще рано говорить об окончании эволюции двигателей внутреннего сгорания. Другими словами, не следует исключать возможность появления бесшатунных моторов, а также агрегатов без коленчатого вала на серийных транспортных средствах.

Источники


  • https://www.PopMech.ru/vehicles/10158-porshen-na-svobode-dvigatel-so-svobodnym-porshnem/
  • https://24techno-guide.ru/neobichnie-dvigateli-vnutrennego-sgoraniya.php
  • https://fishki.net/auto/1809994-samye-neobychnye-dvigateli-vseh-vremen.html
  • https://qwizz.ru/%D0%BD%D0%B5%D0%BE%D0%B1%D1%8B%D1%87%D0%BD%D1%8B%D0%B5-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D0%B8/
  • https://ru.motor1.com/features/405181/10-samykh-neobychnykh-dvigatelej/
  • https://24techno-guide.ru/dvigatel-bez-raspredvalov-tehnologiya-freevalve.php
  • https://fishki.net/auto/2223021-kak-rabotaet-dvigately-bez-grm.html
  • https://www.PopMech.ru/vehicles/237446-kak-rabotaet-dvigatel-bez-grm/
  • https://www.pravda-tv.ru/2019/12/22/443775/byvaet-i-takoe-dvigatel-bez-grm
  • https://AutoManya.ru/sovety/dvs-bez-kolenvala.html
  • https://forse.su/novyi-vitok-evolucii-dvs-syper-dvigatel-bez-kolenvala.html
  • https://DriverTip.ru/osnovy/kak-rabotajut-dvigateli-bez-kolenvala.html
  • http://KrutiMotor.ru/dvigatel-bez-kolenchatogo-vala/

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Ремонт автомобиля, решение проблем с авто
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: